Световые явления в физике, их примеры и краткая терминология
Содержание:
Оптика – раздел физики, изучающий свет, световые явления – процессы, связанные с распространением электромагнитных волн видимого для человека частотного диапазона. Наш глаз воспринимает свет с длиной волны 400-760 ± 20 нм. Рассмотрим распространённые световые явления, примеры таких в природе, быту. Кратко объясним причины их возникновения.
Что собой представляют световые явления в физике
Процессы, связанные с распространением видимого света в вакууме или веществе (газ, прозрачная для света материя, например, стекло), относятся к световым. Карандаш, который кажется сломанным после опускания в стакан, наполовину заполненный водой; увеличивающиеся и искажающиеся лица при взгляде в кривые зеркала; образовавшаяся радуга – явления, досконально изученные оптикой. Ниже – примеры распространённых световых явлений в физике.
Трава зелёная, потому что в ней есть вещество хлорофилл, которое из видимого спектра поглощает все электромагнитные волны, кроме зелёных. Отражаясь, они становятся восприимчивы человеческим зрением.
Второй аспект – спектральный состав лучей, освещающих объект. Смотрели на привычный мир через цветовые фильтры или разноцветные стёкла? Цвет окружающих вещей изменяется. Под лучами солнца трава зелёная. Если её осветить жёлтым цветом, она потемнеет: жёлтый свет растением поглотится, а зелёного, который отразится и попадёт на сетчатку глаза, в световом потоке нет.
Тень и полутень, прямолинейность распространения
В прозрачной однородной среде траектория распространения световых лучей – идеально ровная прямая. Явление объясняет понятие тени, полутени, затмения. Если источник имеет крохотные габариты по отношению к расстоянию от него до освещаемого тела, последнее отбрасывает тень. Крупные источники света или расположенные вблизи с предметом создают тень и полутень.
Преломление и отражение
Преломление световых лучей возникает при переходе света между средами, где свет распространяется с разной скоростью. Отражение – способ взаимодействия электромагнитных волн со средой, вследствие которого волновой фронт отражается в среду, откуда пришёл.
Приборы для управления светом
Линзы – одни из первых оптических приборов, применяющихся для сбора, рассеивания, перенаправления световых пучков. Плоские и кривые зеркала (гиперболические, параболические) – отполированные поверхности с коэффициентом отражения
90%. Отражают находящиеся перед ними предметы.
Примеры световых явлений в природе
Кроме искусственных в природе полно естественных световых явлений. Они возникают в космосе, атмосфере планеты. Свет излучают и отражают даже живые организмы.
Многие животные излучают видимый для человеческого глаза свет: светлячки, биолюминесцентные бактерии, медузы, рыба-фонарик, сверкающие кальмары.
Явление возникает благодаря биолюминесценции – самостоятельному или возникающему вследствие деятельности симбионтов.
Свет распространяется вдоль линий, называемых лучами. В приближении лучевой (или геометрической) оптики пренебрегают конечностью длин волн света, полагая, что λ→0. Геометрическая оптика во многих случаях позволяет достаточно хорошо рассчитать оптическую систему. Простейшей оптической системой является линза.
При изучении интерференции света следует помнить, что интерференция наблюдается только от когерентных источников и что интерференция связана с перераспределением энергии в пространстве. Здесь важно уметь правильно записывать условие максимума и минимума интенсивности света и обратить внимание на такие вопросы, как цвета тонких пленок, полосы равной толщины и равного наклона.
При изучении явления дифракции света необходимо уяснить принцип Гюйгенса-Френеля, метод зон Френеля, понимать, как описать дифракционную картину на одной щели и на дифракционной решетке.
При изучении явления поляризации света нужно понимать, что в основе этого явления лежит поперечность световых волн. Следует обратить внимание на способы получения поляризованного света и на законы Брюстера и Малюса.
Таблица основных формул по оптике
Физические законы, формулы, переменные
Формулы оптики
Абсолютный показатель преломления
Относительный показатель преломления
Закон преломления
Формула тонкой линзы
Оптическая сила линзы
Для выпуклой поверхности R>0.
Для вогнутой поверхности R Поделитесь ссылкой с друзьями:
Физика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Что такое свет? Источники света
Много тысячелетий прошло прежде, чем была выяснена природа этого замечательного явления – свет. Десятки гипотез, предположений, догадок выдвигались учеными. Но вот в конце девятнадцатого века Д. Максвелл и Г. Герц установили, что природа света электромагнитная.
Значение света в жизни человека и в природе громадно. Зарождение и развитие всего живого происходит под влиянием тепла и, конечно, света.
Свет для человека – важнейшее средство познания окружающего мира.
Основной источник света для всей Земли – это Солнце. Световые потоки устремляются к планетам от Солнца благодаря ядерным реакциям, происходящим на нем.
При изучении тепловых явлений одним из видов теплообмена названо излучением, с помощью которого Земля получает от Солнца тепло. Тепло невидимо. Та часть излучения, которая видима глазом человека, называется видимым излучением.
Именно это излучение рассматривается как световое явление.
Не умея объяснить природу света, многие древние ученые придерживались мнения о том, что световые лучи исходят из глаз человека и «ощупывают» все вокруг. Некоторые считали, что есть другое объяснение свету, но не могли его сделать, не зная теории электромагнетизма. Как же далеки были эти люди от современных знаний в оптической области физики.
Сейчас известна природа света, свойства его, строение глаза, создано большое число оптических устройств и простых приборов. Световые явления широко используются в жизни человека.
Создается световое излучение источниками света, которые бывают естественными и искусственными. Сама природа создала естественные источники света. Искусственные источники придумал и изготовил человек.
Естественные (природные) источники света:
Среди таких источников есть яркие, дающие много света, а есть едва видимые в темноте.
Например, науке известно уже около семидесяти видов светящихся грибов. Из них некоторые можно увидеть ночью на расстоянии десяти метров.
Светиться могут подгнившие грузди и старые сыроежки.
Подкрашенный фосфором циферблат часов.
Искусственные источники света:
Не может деятельность человека протекать без освещения. Трудно представить современный город в ночное время без освещенного дома, улицы, квартиры.
Созданные человеком источники света.
Искусственное освещение создано человеком лишь благодаря научному подходу к изучению таких интересных явлений природы – световых.
Распространение света
Чтобы лучше понять, как свет распространяется, введено понятие светового луча. А там, где лучи, там геометрия. Поэтому появился новый подход к световым явлениям, который называется геометрическая оптика.
Для практического изучения света учеными рассматриваются узкие пучки световых лучей. Для их получения используют непрозрачные экраны с отверстиями.
Каковы же главные законы, по которым свет распространяется?
Один из них подтверждается достаточно легко. Человек, который не хочет, чтобы яркий свет бил ему в глаза, приставляет ко лбу ладонь. Он видит окружающие предметы, а свет прямо в глаза ему не попадает.
Это говорит о том, что свет не может обогнуть ладонь и попасть в глаза наблюдателю. Этот пример показывает, что свет идет по прямой.
Значит, существует закон прямолинейного распространения света. Он звучит так:
Как на рисунке, луч света не пойдет. Он не может огибать препятствия.
Первая научная формулировка этого важного закона была дана в третьем веке до нашей эры Евклидом.
В соответствии с этим законом свет в одной и той же среде не может идти по ломаной траектории и огибать препятствия. Отсюда вытекает понятие тени. Тень сопровождает человека всюду.
На экране тень и полутень. Источник
Если поместить между источником света предмет, например, шар, он перекроет путь световых лучей. За шаром на экране в центре тень более темная, чем по краям. Почему так?
Объяснить это можно, проведя два эксперимента.
Первый. Источник по своим размерам очень мал по сравнению с шаром и расстоянием до экрана. Такой источник света называют точечным. Пусть это будет светящаяся точка А. Та часть прямых лучей, которая упирается на шар не дойдет до экрана, и в соответствующей области его образуется темное пятно – тень. Лучи, идущие выше и ниже шара достигают цели и на экране в этой области светло.
Второй эксперимент. Берется источник света большой или сравнимый с предметом, помещенным между источником и экраном. Такой источник содержит огромное число светящихся точек, испускающих лучи. Из каждой точки, которые находятся между А и В выходит такой же пучок света, как и в первом эксперименте.
Потоки лучей из разных точек источника устремляются к экрану, но доходят до него не все. Мешает шар, дающий для каждого потока свою тень. Все тени пересекаются в центре экрана и образуют общее темное пятно – общую тень. Вокруг нее образуется область размытая, куда от одних точек свет попадает, а от других нет – это полутень.
Природа предоставила человеку яркий пример распространения света, который очень напоминает второй эксперимент. Это солнечные и лунные затмения.
Они происходят, когда Солнце, Луна и Земля, двигаясь по законам Солнечной системы, выстраиваются в одну линию, как показано на схемах.
Схема солнечного затмения. Источник
Схема лунного затмения. Источник
Затмения для науки представляют большой интерес, особенно солнечные. Они позволяют наблюдать, хоть и кратковременно, состояние солнечной атмосферы, процессы внутри ее и состав.
Отражение света и его законы
Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.
Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.
В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.
В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.
Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.
Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.
Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.
Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.
На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.
Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.
При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.
На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.
Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.
Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:
Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.
Почему сломался карандаш?
Наблюдательный рыболов видит, что весла от его лодки при погружении в воду как будто ломаются. Когда весла над поверхностью воды, они снова прямые. Почему? Это объясняют оптические законы.
Взмахнуть рукой в воздухе гораздо легче, чем провести рукой внутри воды. Вот и свет проходит в разных средах (например, в вакууме, стекле, воздухе, алмазе, воде) тоже по-разному. На границе двух различных сред меняется направление хода лучей света.
Углы падения и преломления, которые определяются, как и при отражении, с помощью перпендикуляра к границе раздела, в данном случае не равны.
Вот почему карандаш выглядит в стакане сломанным. Здесь не нужно путать световые лучи и сам карандаш. Лучи идут человеку в глаз, как показано на чертеже. То, что карандаш воспринимается глазом в сломанном виде – это оптическая иллюзия, созданная ходом всех лучей, отражающихся от карандаша.
Как проходит свет в разных средах?
Не всегда угол преломления меньше угла падения, как в приведенных примерах. Если вспомнить, что свет – это электромагнитная волна, то значит, он обладает скоростью (300 000 км/с в вакууме). В веществах скорость света другая, всегда меньше.
На своем пути лучи света проходят по различным прозрачным веществам, которые образуют оптическую среду. Если скорость света в одной среде больше, чем в другой, то первая среда называется оптически менее плотной, а вторая – оптически более плотной средой. Например, попадая в воду из воздуха, лучи света переходят из оптически менее плотной среды (воздух) в оптически более плотную (воду).
Преломление лучей на границе раздела связано с оптической плотностью каждой из сред следующим правилом:
Отсюда видно, что угол преломления может быть больше или меньше угла падения. Все объясняется оптическими свойствами среды, куда переходит световой луч.
Оптика
Оптика – это раздел физики, в котором изучаются закономерности световых явлений, природа света и его взаимодействие с веществом.
Световой луч – это линия, вдоль которой распространяется свет.
Закон независимости световых лучей:
при пересечении световых лучей каждый из них продолжает распространяться в прежнем направлении.
Источник света – это тело, которое излучает свет.
При излучении света источник теряет энергию, при поглощении его внутренняя энергия увеличивается, т. е. распространение света сопровождается переносом энергии.
Виды источников света:
Точечный источник света – это источник, представляющий собой светящуюся материальную точку, т. е. источник, размеры которого малы по сравнению с расстоянием до освещаемого предмета.
Если источник света находится в бесконечности, то его лучи падают на поверхность параллельным пучком.
Свет – это электромагнитная волна с частотой от 1,5·10 11 Гц до 3·10 16 Гц.
Скорость света в вакууме: \( c \) = 3·10 8 м/с.
Прямолинейное распространение света
Закон распространения света:
свет в прозрачной однородной среде распространяется прямолинейно.
Экспериментальным доказательством прямолинейности распространения света является образование тени.
Тень – это область пространства, куда не попадает свет от источника.
Полутень – это область пространства, куда частично попадает свет от источника.
Если источник света точечный, то на экране образуется четкая тень предмета.
Если источник неточечный, то на экране образуется размытая тень (области тени и полутени).
Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как солнечное и лунное затмения.
Закон отражения света
Отражение – это явление, при котором при падении световых лучей на непрозрачную гладкую поверхность они меняют направление распространения, возвращаясь в прежнюю среду.
АО – падающий луч, ОВ – отраженный луч, СО – перпендикуляр
Угол падения – это угол между падающим лучом и перпендикуляром к отражающей поверхности.
Угол отражения – это угол между отраженным лучом и перпендикуляром к отражающей поверхности.
Законы отражения света
Виды отражения
Если луч падает перпендикулярно отражающей поверхности, то угол падения равен нулю, и угол отражения тоже равен нулю. Поэтому луч отражается в обратном направлении.
Важно!
В оптике все углы отсчитываются от перпендикуляра к отражающей поверхности или к границе раздела сред.
Построение изображений в плоском зеркале
Построение изображения в плоском зеркале основано на законах отражения света.
Алгоритм построения изображения в плоском зеркале
Изображение предмета в плоском зеркале мнимое, прямое, по размерам равное предмету, находящееся за зеркалом на таком же расстоянии, на каком предмет находится перед зеркалом.
Важно!
Если на поверхность плоского зеркала падает сходящийся пучок лучей, то изображение получается действительным.
Если поверхность двух плоских зеркал образует угол \( \varphi \) , то количество изображений в такой системе зеркал можно определить по формуле:
где \( N \) – количество изображений.
Закон преломления света
Преломление света – это изменение направления распространения светового луча на границе раздела двух сред.
Угол преломления – это угол между преломленным лучом и перпендикуляром к границе раздела двух сред.
\( \gamma \) – угол преломления
Законы преломления света
где \( n_ <21>\) – относительный показатель преломления.
Первой является среда, в которой распространяется падающий луч, второй является среда, в которой распространяется преломленный луч.
Относительный показатель преломления равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:
где \( n_1 \) – абсолютный показатель преломления первой среды; \( n_2 \) – абсолютный показатель преломления второй среды.
Абсолютный показатель преломления показывает, во сколько раз скорость света в вакууме больше, чем в данной среде:
где \( c \) – скорость света в вакууме, \( v \) – скорость распространения света в данной среде.
Относительный показатель преломления показывает, во сколько раз скорость распространения света в первой среде больше, чем во второй:
Среда, у которой абсолютный показатель преломления больше, является оптически более плотной средой.
Среда, у которой абсолютный показатель преломления меньше, является оптически менее плотной средой.
Следствия закона преломления света
Если луч падает на плоско параллельную пластину, изготовленную из оптически более плотного вещества, чем окружающая среда, то луч не изменяет своего направления, а лишь смещается на некоторое расстояние.
\( x \) – смещение луча от первоначального направления:
где \( d \) – толщина пластины.
Полное внутреннее отражение
Если свет падает из оптически более плотной среды в оптически менее плотную среду, то с увеличением угла падения увеличивается угол преломления. При некотором значении угла падения угол преломления становится равным 90°. Преломленный луч будет скользить по поверхности раздела двух сред.
Предельный угол полного отражения – это угол падения, при котором угол преломления становится равным 90°:
Если вторая среда – воздух, \( n_2 \) = 1, то \( \sin\alpha_<пр.>=\frac<1>
При дальнейшем увеличении угла падения угол преломления тоже увеличивается и наблюдается только отражение света. Это явление называется полным отражением света.
Применение явления полного внутреннего отражения
Треугольная призма – прозрачное тело, ограниченное с трех сторон плоскими поверхностями так, что линии их пересечения взаимно параллельны.
Если призма изготовлена из оптически более плотного вещества, чем окружающая среда, то луч, дважды преломляясь, отклоняется к основанию призмы, а мнимое изображение источника света смещается к вершине призмы.
Преломляющий угол призмы – это угол, лежащий против основания.
Угол отклонения луча призмой – это угол между направлениями падающего на призму и вышедшего из призмы лучей.
\( \varphi \) – преломляющий угол,
\( \theta \) – угол отклонения луча призмой.
Важно!
С помощью треугольной равнобедренной призмы с преломляющим углом 90° можно:
Линзы. Оптическая сила линзы
Линза – это прозрачное тело, ограниченное двумя сферическими или криволинейными поверхностями, одна из которых может быть плоской.
Тонкая линза – физическая модель линзы, в которой ее толщиной можно пренебречь по сравнению с диаметром линзы.
Классификация линз
2. По оптическим свойствам:
Величины, характеризующие линзу
Главная оптическая ось – это прямая, проходящая через центры сферических поверхностей линзы.
Оптический центр линзы – это точка пересечения главной оптической оси с линзой, проходя через которую луч не изменяет своего направления.
Побочная оптическая ось – это любая прямая, проходящая через оптический центр линзы под произвольным углом к главной оптической оси.
Фокус линзы – это точка, в которой пересекаются после преломления лучи, падающие на линзу параллельно главной оптической оси.
Фокальная плоскость – это плоскость, проходящая через фокус линзы перпендикулярно ее главной оптической оси.
Побочный фокус – это точка пересечения побочной оптической оси с фокальной плоскостью.
Оптическая сила линзы – это величина, обратная фокусному расстоянию.
Обозначение – \( D \) , единица измерения – диоптрия (дптр):
1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.
Важно!
Оптическая сила линзы зависит от показателя преломления линзы и от радиусов кривизны сферических поверхностей, ограничивающих линзу:
где \( n_л \) – показатель преломления линзы, \( n_ <ср>\) – показатель преломления среды, \( R_1 \) и \( R_2 \) – радиусы сферических поверхностей.
Если поверхности выпуклые, то \( R_1 \) > 0 и \( R_2 \) > 0, если поверхности вогнутые, то \( R_1 \) \( R_2 \) \( R_1\to\infty \) , а вторая поверхность выпуклая: \( R_2 \) > 0, то
Формула тонкой линзы
где \( F \) – фокусное расстояние линзы, \( d \) – расстояние от предмета до линзы, \( f \) – расстояние от линзы до изображения.
Правило знаков:
где \( H \) – линейный размер изображения, \( h \) – линейный размер предмета.
где \( f \) – расстояние от линзы до изображения, \( d \) – расстояние от предмета до линзы.
Важно!
При расчете увеличения линзы знаки \( f \) и \( d \) не учитываются.
Построение изображений в линзах
Для построения изображения в линзах следует помнить:
Изображение, даваемое тонкой линзой, может быть действительным или мнимым.
Действительное изображение получается в результате пересечения преломленных в линзе лучей, исходящих из данной точки.
Мнимое изображение получается в результате пересечения продолжений преломленных в линзе лучей, исходящих из данной точки.
Построение изображений точки, даваемых собирающей линзой
Построение изображений предмета, даваемых собирающей линзой
Построение изображений точки, даваемых рассеивающей линзой
В рассеивающей линзе изображение точки всегда получается мнимым, по ту же сторону от линзы.
Построение изображений предмета, даваемых рассеивающей линзой
Изображение предмета в рассеивающей линзе всегда получается мнимым, прямым, уменьшенным, по ту же сторону от линзы.
Важно!
При решении задач на прохождение световых лучей сквозь линзы и получение изображений в них прежде всего выясните, о какой линзе идет речь: собирающей или рассеивающей. Обязательно сделайте чертеж, на котором соответствующими буквами укажите все основные расстояния: расстояние от предмета до линзы, расстояние от линзы до изображения, фокусное расстояние. Также обязательно укажите оптический центр линзы и оба фокуса по разные стороны от линзы.
При построении изображения следует заранее выучить, каким оно должно быть при соответствующем расположении предмета относительно линзы и где находиться (действительным или мнимым, увеличенным или уменьшенным, прямым или обратным). В противном случае при неверном построении, когда вы чуть-чуть искривите луч или он пойдет неточно через фокус или центр, изображение может оказаться не там, где надо, или вместо увеличенного уменьшенным, и тогда в решении появится ошибка.
Оптические приборы. Глаз как оптическая система
Оптические приборы – это устройства, предназначенные для получения на экране, светочувствительных пленках, фотопленках и в глазу изображений различных предметов.
Лупа – это короткофокусная двояковыпуклая линза, предназначенная для относительно небольшого увеличения изображения.
Увеличение лупы рассчитывается по формуле:
где \( d_0 \) – расстояние наилучшего зрения, \( d_0 \) = 0,25 м.
Для получения увеличенного изображения предмет помещают перед линзой на расстоянии немного меньше фокусного. Изображение получается мнимым.
Микроскоп – это оптический прибор, предназначенный для рассматривания очень мелких предметов под большим углом зрения.
Микроскоп состоит из двух собирающих линз – короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми может изменяться:
где \( F_1 \) – фокусное расстояние объектива; \( F_2 \) – фокусное расстояние окуляра.
Фотоаппарат – прибор, предназначенный для получения действительных, уменьшенных, перевернутых изображений предметов на фотопленке.
Предметы могут находиться на разных расстояниях.
Мультимедийный проектор – оптическое устройство, с помощью которого на экране получают действительное, увеличенное изображение, снятое с источника видеосигнала.
Человеческий глаз – оптическая система, подобная фотоаппарату.
Зрачок регулирует доступ света в глаз. Диаметр зрачка уменьшается при ярком освещении и увеличивается при слабом.
Хрусталик имеет форму двояковыпуклой линзы с показателем преломления 1,41. Он может изменять свою форму, в результате чего меняется его фокусное расстояние. При рассмотрении близких предметов хрусталик становится более выпуклым, при рассмотрении удаленных предметов – более плоским.
На сетчатке глаза образуется действительное, уменьшенное, перевернутое изображение предмета. Благодаря большому количеству нервных окончаний, находящихся на сетчатке, их раздражение передается в мозг и вызывает зрительные ощущения.
Зрение двумя глазами позволяет видеть предмет с разных сторон, т. е. осуществлять объемное зрение.
Если смотреть на предмет одним глазом, то, начиная с 10 м, он будет казаться плоским, если смотреть на предмет двумя глазами, то это расстояние увеличивается до 500 м.
Угол зрения – это угол, образованный лучами, идущими от краев предмета в оптический центр глаза.
\( \varphi \) – угол зрения.
Аккомодация глаза – это свойство глаза, обеспечивающее четкое восприятие равноудаленных предметов путем изменения фокусного расстояния оптической системы.
Предел аккомодации – от \( \infty \) до 10 см.
Расстояние наилучшего зрения – это наименьшее расстояние, с которого глаз может без особого напряжения рассматривать предметы:
Дефекты зрения
Очки – это простейший прибор для коррекции оптических недостатков зрения.
Близорукость исправляют с помощью рассеивающих линз.
Дальнозоркость исправляют с помощью собирающих линз.
Интерференция света
Интерференция света – это явление перераспределения энергии в пространстве, происходящее в результате сложения когерентных волн, вследствие чего в одних местах возникают максимумы, а в других минимумы.
Когерентные волны – это волны, имеющие одинаковую частоту и постоянную во времени разность фаз.
Когерентные волны можно получить от одного источника в результате отражения, преломления или дифракции.
Два независимых источника света не могут быть когерентными, поэтому в опытах с интерференцией света световые пучки от одного источника разделяют на два пучка, заставляют их проходить разные расстояния, а потом соединяют.
Когерентными могут быть:
Интерференционная картина представляет собой чередование светлых (цветных) и темных полос.
Источником когерентных волн является лазер.
Геометрическая разность хода волн – это разность путей волн от двух когерентных источников \( S_1 \) и \( S_2 \) до точки пространства \( M \) , в которой наблюдается интерференция.
Обозначение – \( \Delta r \) , единица измерения в СИ – м.
Условие максимума интерференции
Если геометрическая разность хода содержит целое число длин волн или четное число длин полуволн, то в месте их наложения друг на друга наблюдается усиление света – максимум:
где \( k \) = 0; 1; 2; 3… – порядок интерференционного максимума.
Условие минимума интерференции
Если геометрическая разность хода содержит нечетное число длин полуволн, то в месте их наложения друг на друга наблюдается ослабление света – минимум:
где \( k \) = 0; 1; 2; 3… – порядок интерференционного минимума.
Если свет распространяется в прозрачной среде с показателем преломления \( n \) , то применяют понятие оптической разности хода.
Оптическая разность хода – это величина, равная произведению показателя преломления и геометрической разности хода волн.
Обозначение – \( \Delta \) , единица измерения в СИ – м.
Интерференция в тонких пленках
Наблюдаемое в природе радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах) объясняется интерференцией света, возникающей в результате отражения света от передней и задней поверхностей пленки. На тонкую прозрачную пленку толщиной \( h \) падает световая волна, ограниченная лучами 1 и 2. В точке О свет частично отразится от верхней поверхности пленки (волна 1′), а частично преломится и отразится от задней ее поверхности в точке С, преломившись в точке В, выйдет в воздух параллельно волне 1′. Волны 1′ и 1″ когерентны. (То же самое справедливо и для луча 2.)
Если на пути этих лучей поставить собирающую линзу, то они будут накладываться в ее фокальной плоскости и давать интерференционную картину. ( То же самое справедливо и для луча 2.)
Максимум освещенности поверхности тонкой пленки в отраженном свете:
где \( \Delta=2k\frac<\lambda> <2>\) – оптическая разность хода световых волн при отражении от верхней и нижней поверхности, \( k \) = 1; 2; 3… – целое число длин полуволн, укладывающихся в этой разности хода, \( \beta \) – угол преломления.
Минимум освещенности поверхности тонкой пленки в отраженном свете:
Максимум освещенности поверхности тонкой пленки в проходящем свете:
Минимум освещенности поверхности тонкой пленки в проходящем свете:
Примером интерференции являются кольца Ньютона, которые наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны. Воздушная прослойка постепенно утолщается от точки соприкосновения линзы к краям. Отраженные от верхней и нижней границ воздушной прослойки световые волны интерферируют между собой. При этом получается следующая картина: в точке соприкосновения наблюдается черное пятно, окруженное рядом концентрических светлых и темных колец убывающей ширины.
Радиус светлого кольца Ньютона в отраженном свете:
где \( R \) – радиус кривизны линзы, \( k \) – номер кольца, считая от центра интерференционной картины.
Радиус темного кольца Ньютона в отраженном свете:
Радиус светлого кольца Ньютона в проходящем свете:
Радиус темного кольца Ньютона в проходящем свете:
Важно!
При решении задач следует учитывать, в каком свете наблюдается интерференция: в отраженном или проходящем.
Использование интерференции света
Дифракция света
Дифракция света – это явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.
Наилучшее условие для наблюдения дифракции создается, когда размеры отверстий или препятствий – порядка длины волны. Чтобы определить распределение интенсивности световой волны, распространяющейся в среде с неоднородностями, используют принцип Гюйгенса–Френеля.
Принцип Гюйгенса–Френеля
Каждая точка фронта волны является источником вторичных волн, которые интерферируют между собой. Поверхность, касательная ко всем вторичным волнам, представляет новое положение фронта волны в следующий момент времени.
Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой, поэтому амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.
Дифракционная решетка
Дифракционная решетка – это оптический прибор, предназначенный для наблюдения дифракции света.
Дифракционная решетка представляет собой систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.
Дифракционную решетку применяют для разложения света в спектр и измерения длин световых волн.
Период решетки – это величина, равная сумме ширины прозрачной и непрозрачной полос решетки.
Обозначение – \( d \) , единица измерения в СИ – м.
где \( a \) – ширина прозрачной полосы; \( b \) – ширина непрозрачной полосы.
Если решетка регулярна, т. е. ее прозрачные и непрозрачные полосы имеют одинаковую ширину, то период решетки можно рассчитать, разделив ее длину на число штрихов:
где \( l \) – длина решетки, \( N \) – число штрихов.
Формула дифракционной решетки
где \( d \) – период решетки; \( \varphi \) – угол дифракции; \( k \) = 0; 1; 2… – порядок максимума, считая от центрального \( k \) = 0 и расположенного напротив центра решетки; \( \lambda \) – длина волны, падающей на решетку нормально к ней.
Если дифракционная решетка освещается белым светом, то при \( k \) ≠ 0 разным длинам волн будут соответствовать разные дифракционные углы. Поэтому положение главных максимумов ненулевого порядка будет различным. Центральный максимум ( \( k \) = 0) остается белым, т. к. при \( k \) = 0 для всех длин волн \( \varphi \) = 0, т. е. положение главного максимума для всех длин волн одинаково. Все остальные максимумы имеют вид радужных полос, называемых дифракционными спектрами первого порядка ( \( k \) = 1), второго порядка ( \( k \) = 2) и т. д. Ближе к центральному максимуму находится фиолетовый край спектра, дальше всего – красный, т. к. \( \lambda_ <фиол>, то и \( \varphi_ <фиол>.
Важно!
Поскольку углы, под которыми наблюдаются максимумы первого и второго порядка, не превышают 5°, можно вместо синусов углов использовать их тангенсы.
Дисперсия света
Дисперсия света – это зависимость показателя преломления среды от длины волны (частоты) падающего на вещество света.
Опыт Ньютона (1672)
Из-за дисперсии световые волны с различной длиной волны поразному преломляются веществом, что приводит к разложению белого света на цветные монохроматические лучи – спектр.
Для лучей света различной цветности показатели преломления данного вещества различны, т. к. различны скорости распространения электромагнитных волн, у которых разная длина волны. Луч красного света преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового цвета наименьшая. Это объясняется особенностями взаимодействия этих волн с электронами, входящими в состав атомов и молекул вещества среды, где они движутся.
Дисперсией света объясняется такое природное явление, как радуга.